How commit policies enable
end-to-end traceability and faster code reviews

Code commit rules your developer team will follow

MIDORI j+§

Who is Midori?

e

Experience

10+ years in the Atlassian Ecosystem

© Top Vendor

(earlier was called “Atlassian Verified")
Reliable maintenance, guaranteed support and top-notch docs

Powering 4000+ customers

Bank of America, BMW, Northrop Grumman, Lenovo, etc.

What is Better Commit Policy?

&

On the market since 2015

The must-have app for
every developer team

“Set it and forget it" commit rules
Code change, tag and branch verification for
Git, Bitbucket, GitHub, GitLab, Subversion & Mercurial

How commit policies enable

end-to-end traceability and faster code reviews

Why do you need commit policies?

How do commit policies work?

Defining commit policies

Installing commit policies

Commit policies in any environment

Introducing commit policies to your team

How commit policies enable

end-to-end traceability and faster code reviews

Why do you need commit policies?

How do commit policies work?

Defining commit policies

Installing commit policies

Commit policies in any environment

Introducing commit policies to your team

Why do you need commit policies?

Key reasons for using commit policies

—
° ® v
o (R 2 .
(o) ® -
Code repositories need to Changes to source code need to A well-controlled code base
follow processes/regulations be connected to requirements makes reviews and audits easy
Commit policies ensure The relation needs must be Commit Policies help
compliance in industries like: traceable between code changes answer questions like:
and:
e Avionics e Why was this changed?
e Automotive * Requirements e Was it tested?
e Financial e Testexecutions e |s this within the scope of
e Defence * Bugreports the current release?
e Medical * Version releases e Who approved this merge?
e Pharmaceutical * Userstories e [s there a programmatic test

e (Other safety-critical) for this story?

Why do you need commit policies?

What are the risks of an uncontrolled repository?

Money Companies Markets Tech Media us. v Q

Computer meltdown may cost YOUR
cOMPANY over S100 million

by lvana Kottasova @ivanakottasova

<5
@ May 29, 2017: 9:54 AMET \“,;

425% 4.342%

3.875% 3.927%

4708%

E2aiptohon-submarine/

How commit policies enable

end-to-end traceability and faster code reviews

Why do you need commit policies?

How do commit policies work?

Defining commit policies

Installing commit policies

Commit policies in any environment

Introducing commit policies to your team

How do commit policies work?

The commit verification process

Changes sent to Jira

for verification Rejected changes Accepted changes

Ao | A

Commited changes »:’ Commit Policy "
\ hook script

—

Target
repository

Commit rejected with Successful commit
descriptive message

How do commit policies work?

level of frustration

The KILLER feature you won't find elsewhere: local commit verification with Git \%ﬂemd
commit, commit, commit push
minln ©|:| OO A4
USU?l approaCh: . Local Remote
Verify remotely when pushing repository repository .

| must use interactive
|:| |:| |:| rebasing to fix all those...

all rejected! too late!

commit push ...will always succeed!
”~ N\
[] QD Hn oo
L > N~
The Midori approach:
. i Local Remote
Verify locally when committing repository repository

Okay, let me just

quickly re-commit the
|:| very last one.

one rejected!

How commit policies enable

end-to-end traceability and faster code reviews

Why do you need commit policies?

How do commit policies work?

Defining commit policies

Installing commit policies

Commit policies in any environment

Introducing commit policies to your team

Defining commit policies

Commit policy = rules for who can change what under what conditions in repositories

¢ Jira Software Dashboards v Projects v Issues v Boards v Calendar Commits ¥ Planning poker Create

Commit Policies £} Global Configuration

© Commit policies are named sets of conditions that will be verified against every commit to be sent to the central Version Control System repository. You can create, update or delete them here.

More about policies —

ID Name Description Actions

18 Application design guidelines This policy is for the application (Android and i0S) design guidelines and documentation Apply to a repository - (] v
7 Crypto Exchange Policy Commits accepted only against unresclved issues in the CEP project. Apply to a repository -] L
12 Current CLD Sprint Commits only against the "Cloud Hosting” Sprint will be accepted. Apply to a repository -] v
20 EVM - Solidity This policy ensures that only .solidity files are committed and changed Apply to a repository - (] L
9 FREEZE Commit policy to freeze the repository by rejecting all changes. Apply to a repository - & L
8 Image files only Only image files in the "jpg" "jpeg” ".svg" “.png" ".gif" formats are accepted. Apply to a repository -] L
19 Sounds and music This rule only allows audio files to be changed. Apply to a repository -] v
1 TOMCAT Commit policy for Apache Tomcat, an open-source server and servlet container. Apply to a repository - (] v

=+ Add policy

Defining commit policies

Editing the details of commit policies

= o]ira Software Dashboards v Projects v Issues v Boards v Calendar Commits v Planning poker Create

Edit Commit Policy

Policy ID |1
Name® | TOMCAT

Description | Commit policy for Apache Tomcat, an open-source server and servlet

container.

Vi
Rejection message | All changesets pushed into this repository must conform to our coding policy,

see the manual page for details: https://tomcat.apache.org/tomcat-7.-0-

doc/appdev/source.html
vz

TIP. If your Version Control System or Operatin s with international characters, consider using English-only characters

Options Accept the commits that already exist in the repository (on another branch) without verification
The commits that have their SHA already existing in the repository will not be verified again. For example, when being merged to a new branch. (For Git only.)

¥ Accept the merge commits without verification

(For Git and Mercurial.)

Tag rules The tag must satisfy all of these rules:

Defining commit policies

Adding tag, branch and commit rules to commit policies

¥/ Accept the merge commits without verification

(For Git and Mercurial.)

Tag rules The tag must satisfy all of these rules:

© Norules added yet.

+ Add rule

Branch rules The branch must satisfy all of these rules;

© Norules added yet.

+ Add rule

Commit rules The commit must satisfy all of these rules:

© Norules added yet.

+ Add rule

Save Cancel

Defining commit policies

Customizing the conditions within a tag rule

Tag rules

The tag must satisfy all of these rules:

Condition 1.2 Tag name must contain issue keys from a JQL query

exactly oneissue Y| in | project = BFB and assignee = currentUser()
[l Allow and ignore the issue keys that don't match the JQL

Leave the JQL blank to accept any existing issue key.

= Examples

+ Add condition v

Rule 1)
) Apply this rule only if the tag name matches | = Glob v
) Additional rejection message for this rule
The commit must satisfy | all ¥ | of these conditions:
Condition 1.1 Tag name must match a pattern o
(BFB)-\d+.* RegEx v
» Examples
(]

Non-existing issue keys are strictly rejected. Other references with similar syntax can be ignored by re-configuring the issue key pattern.

+ Add rule

Defining commit policies

Customizing the conditions within a branch rule

Branch rules

The branch must satisfy all of these rules:

Rule 2 (]

2 Apply this rule only if the branch name matches | = Glob v

) Additional rejection message for this rule

The commit must satisfy | all ¥ | of these conditions:

Condition 2.1 Branch name must match a pattern Q
(feature|bugfix)/(BFB)-\d+\S+ RegEx v
» Examples
Condition 2.2 Branch name must contain issue keys from a JQL query Q
exactly oneissue Y| In | status = “In Progress” (]

|! Allow and ignore the issue keys that don't match the JQL
Leave the JQL blank to accept any existing issue key.
Non-existing issue keys are strictly rejected. Other references with similar syntax can be ignored by re-configuring the issue key pattern.

» Examples

+ Add condition v

+ Add rule

Defining commit policies

Customizing the conditions for commit messages

Commit rules The commit must satisfy all of these rules:

Rule 1

¥ Limit scope

&) Apply this rule only if the branch name matches | = Glob v

) Apply this rule only for the files whose path matches | « Glob v

¥ Additional rejection message for this rule

VA

TIP If your Version Control System or Operating System console fails with international characters, consider using English-only characters.

v

The commit must satisfy | all of these conditions:

Condition 1.1 Commit message must match a pattern
* Glob v

» Examples

+ Add condition v

Defining commit policies

Customizing the conditions for commit messages

Condition 2.1 Commit message must match a pattern
(BFB)-\d+.* RegEx v

* Examples

Require at least 10 character long commit messages (excluding whitespace)

COPY REGEX

Require a Jira issue key from the FOO or BAR projects in the start of the commit message:
COPY REGEX FOC|B&R) -\d+.*

Enforce the 50/72 rule:
COPY REGEX | \S.{0,49} ((\r\ni\xrI\n) (\rAni\x|\n).{1,72} ((\r\ni\xl\n){1,2}

Defining commit policies

Customizing the conditions for commit messages

Condition 2.2 Commit message must contain issue keys from a JQL query

exactly oneissue Y| in | project = "Beem for Business" and status= "In Progress” and assignee = curreni]

() Allow and ignore the issue keys that don't match the JQL
Leave the JQL blank to accept any existing issue key.
Non-existing issue keys are strictly rejected. Other references with similar syntax can be ignored by re-configuring the issue key pattern.
* Examples
Issues from project FOO:
COPY JQL | project = FCO

Issues from project FOO and assigned to the commiter (for Git):
COPY JQL | proj

t = FOC and assignee = currentUser()

Issues from project FOO and assigned to the commiter (for Subversion):

COPY JQL | prcject = FCO and assignee = "§c

Issues from project FOO and assigned to the commiter or to anyone if the committer is the project lead (for Git):

COPY JQL

FCO and (assignee = currentUser() or project in projectsLeadByUser())

User stories in the current sprint from project FOO:

COPYJQL | project = FCO and issuetype = Story and sprint in openSprints()

ojec

Defining commit policies

Customizing the conditions for changed files

Condition 2.3 Changed paths (files) must match a pattern

!({*.obj, *.tmp, *.class}) Glob v

“

Examples
Avoid checking in *.obj, *.tmp, *.class files:

COPYGLOB | !({*.0obj,*.tmp, *.class})

Allow files with restricted types in a directory, e.g. **/images must contain image files:

COPY GLOB | */

3/*. {ipg, png, gif}

Lock a file, i.e. no changes are allowed on a file:

COPYGLOB | !({*/

Lock a directory, i.e. no changes are allowed on a directory and its descendants:
COPY GLOB | ! (production-config/)

Lock (freeze) the whole repository, i.e. to reject all changes in a repository:

COPY REGEX | (2!.%)

Enforce naming conventions on Java files (tip: implement any naming convention similarly):

COPY REGEX | (((.*/

Protect the Subversion repository structure (/trunk, /branches, and /tags):

COPYREGEX | (.*/)? (trunk|branchesitags)/.*

Defining commit policies

Customizing the conditions for changed files

Condition 2.4 Changed paths (files) must contain issue keys from a JQL query
exactly oneissue Y| in | project = "Fitband App” and assignee = "$committer.userName” (]

) Allow and ignore the issue keys that don't match the JQL
Leave the JOL blank to accept any existing issue key.

Non-existing issue keys are strictly rejected. Other references with similar syntax can be ignored by re-configuring the issue key pattern.
* Examples

Issues from project FOO:

COPY JQL | project = FCO

Issues from project FOO and assigned to the commiter (for Git):

COPYJQL | project = FCO and assignee = currentUser()

Issues from project FOO and assigned to the commiter (for Subversion):
COPY JQL | project = FOO and assignee = "§c

nitter.userName"

Issues from project FOO and assigned to the commiter or to anyone if the committer is the project lead (for Git):

COPYJQL | project = FCO and {assignee = currentUser() or

rojectsLeadByUser())

COPY JQL | project = FOO and (assignee = "§committer.userName" or project

User stories in the current sprint from project FOO:

COPY JQL | project = FCO and issuetype = Story and sprint in openSprints()

in projectsleadByUser ("$committer.t

Defining commit policies

Customizing the conditions for committer users

Condition 2.5 Committer must have a valid JIRA account
Committer's | email Y | must identify a valid Jira user account
¥l User must be member in any of these Jira groups: | | lira-software-users X

e.g. the “jira-developers” group only

+ Add condition v

Defining commit policies

Customizing the conditions for committer users

Condition 2.6 Committer attribute must match a pattern

v

Committer's | email must match the pattern

v Examples
Accept from a specific email domain:

COPY GLOB | *@gmail.com

Accept from a list of usernames:

COPY GLOB | {john,jack,tom)

Accept nothing (freeze the repository):

COPY REGEX 21.%)

+ Add condition v

*@midori-global.com

Glob v

How commit policies enable

end-to-end traceability and faster code reviews

Why do you need commit policies?

How do commit policies work?

Defining commit policies

Installing commit policies

Commit policies in any environment

Introducing commit policies to your team

Installing commit policies

Installing and applying commit policies to repositories

Hook Script Wizard

| want to apply the TOMCAT commit policy
toa | Git v | repository
More help about Git hook scripts

so that the commits are verified | in the central repository (remote) ¥

hosted on | Linux, Mac OS X (All U variants) ¥

Select the OS of the server which hosts the Git repositories and hooks.

Installing commit policies

Installing and applying commit policies to repositories

Hook Script Wizard

| want to apply the TOMCAT commit policy

toa v |repository

Mercurial
so that the commits are verified Subversion

hosted on | Linux, Mac OS X (All U variants) ¥

Select the OS of the server which hosts the Git repositories and hooks.

Installing commit policies

Installing and applying commit policies to repositories

Hook Script Wizard

| want to apply the TOMCAT commit policy
toa | git v | repository

More help about Git hook scripts

so that the commits are verified | in the central repository (remote) ¥

in the central repository (remote)

hosted-oni: [5, my local repository (clone)

Select the OS of the server which hosts the Git repositories and hooks.

Installing commit policies

Installing and applying commit policies to repositories

Hook Script Wizard

| want to apply the TOMCAT commit policy
toa | Git v | repository
More help about Git hook scripts

so that the commits are verified | in the central repository (remote) ¥

hosted on | Linux, Mac OS X (All U*x variants) ¥
Linux, Mac OS X (All U*x variants) epositories and hooks.
Windows

Installing commit policies

Installing and applying commit policies to repositories

Hook Script Wizard

Install Python for the hook scripts

If this is the very first hook script for this Git server, make sure that the software required for executing the hook scripts

are installed to the server.
You only need to execute this step once, by clicking the link below and following the instructions. If you already

completed this step before, you can safely skip it now.

Show instructions

Back | have installed Python

Installing commit policies

Installing and applying commit policies to repositories

Hook Script Wizard

B EE——
Download the hook script package

Click the button, then a ZIP archive with all necessary files will be downloaded to your browser.

- Download

Back | have downloaded the ZIP

Installing commit policies

Installing and applying commit policies to repositories

Hook Script Wizard

Install the hook script

Unpack the ZIP file to the location where Git expects it
You will need write access to the filesystem where Git stores the repositories and hooks. Ask for the help of your
system administrator when in doubt.
The destination directory is here by default:
<CENTRAL_GIT_REPO>/.git/hooks

..or here for a Git bare repositorv (if vou don't know what it is. then use the first location):

Back | have installed the hook script

Installing commit policies

Installing and applying commit policies to repositories

I & 5 | hook
Home Share View
L v > ThisPC > Local Disk (C:) » repo > local » .git > hooks
Name -

Quick access

2% Dropbox

& Midori Team Folder
¢@ OneDrive

[This PC
_J 3D Objects
[Desktop
Documents
& Downloads
} Music
[&] Pictures
B Videos
‘i Local Disk (C:)

@ Network

0 applypatch-msg.sample

D commit-msg.sample

; jcp-git-local-windows-1-hook-scripts.zip
[:] post-update.sample

D pre-applypatch.sample

D pre-commit.sample

[] prepare-commit-msg.sample

D pre-push.sample

D pre-rebase.sample

E] update.sample

Date modified Type Size

“j Extract Compressed (Zipped) Folders

Select a Destination and Extract Files

Files will be extracted to this folder:

| C:\repo\local\.git\hooks\jcp-git-local-windows-1-hook-scripts| Browse...

Show extracted files when complete

act | Cancel

v O

Search hooks

o

[}

Installing commit policies

Installing and applying commit policies to repositories

Hook Script Wizard

Test your configuration

Try to commit something that should be rejected

Ex: if your policy requires at least one issue key, then make a commit with the message "No issue key here".
Check if it is rejected.

Try to commit something that should be accepted

Ex: if your policy requires at least one issue key, include one in the commit message: "Fix for FOO-17".

Check if it is accepted.

Installing commit policies

Testing your commit rule

Terminal File Edit View Search Terminal Help

$ git status
on branch feature/nullability-review
Changes not staged for commit: .

(use "git add <file>..." to update what will be committed) L . .
(use "git checkout -- <file>..." to discard changes in working directory) Make a change, and commit it without linking to a Jira issue.

no changes added to commit (use "git add" and/or "git commit -a")
$ git commit -am "Add Nullable annotations to all contains() methods"

REJECTED!

Start the commit message with the key of an unresolved in-progress issue! Rejected (immediately, not when pushing to the server)!

1.1 COMMIT [NEW COMMIT] on [feature/nullability-review] Exactly one issue key must be mentioned in the jcommit message "Add Nullable anno..."
1.2 COMMIT [NEW COMMIT] on [feature/nullability-review] Commit message "Add Nullable anno..." must matdh the pattern <GVA-\d+.*> (regex)

REJECTED!

$ git commit -am "GVA-3 Add Nullable annotations to all contains() methods" Commit again including a J sue in the commit message.

REJECTED!

Start the commit message with the key of an unresolved in-progress issue! Rejected, as the issue key is not an unresolved in-progress issue!

1.1 COMMIT [NEW COMMIT] on [feature/nullability-review] Issue key [GVA-3] not found in the JQL query rgsult: <project = GVA AND status = "In Progress" AND resolution IS EMPTY> (by user <admi
n>)

REJECTED!

$ git commit -am "GVA-4 Add Nullable annotations to all contains() methods" Commit again including a Jira issue that meets the requirements.
[feature/nullability-review d73085d] GVA-4 Add Nullable annotations to all contains() methods

2 files changed, 2 insertions(+), 2 deletions(-)
3 | Accepted.

Installing commit policies

Testing your tag rule

Terminal File Edit View Search Terminal Help

$ git tag vi.2
3 gu pugh --tags eate the tag "v and push it.
Counting objects: 15, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (15/15), 1.63 KiB | © bytes/s, done.
Total 15 (delta ©), reused © (delta 0)

remote:
remote: REJECTED!
remote:
remote: Tags must be semantic version names (e.g.

remote: e S %
remote: 1.1 TAG [vi.2] Tag nane must match the pattern <(o][1-91\d*)\.(0][1-91\d*)\. (BTTToTNa™)(Ch eI ICULL | (0] [1-97\d* | \d*[a-2A-2-][0-9a-2A-Z-]#))*)? (\+[6-9a-

zA-Z-1+(\.[0-9a-ZA-Z-]+)*)?> (regex)
remote:
remote: REJECTED!
remote:
To /tmp/git-shots/srv/website/

! [remote rejected] v1.2 -> v1.2 (pre-receive hook declined)
error: failed to push some refs to '/tmp/git-shots/srv/website/'

$ git tag 1.2.0 v1.2
Deloted tog vis? (wassag}gbszg v Rename it to "1.2.0" (a valid semantic version name), and push again.

$ git push --tags
Counting objects: 15, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (15/15), 1.03 KiB | © bytes/s, done.
Total 15 (delta 0), reused 0 (delta 0) Accepted.
remote:
To /tmp/git-shots/srv/website/
* [new tag] 1.2.0 -> 1.2.0
) |

Installing commit policies

Testing your branch rule

Terminal File Edit View Search Terminal Help
$ svn cp A/trunk A/branches/authenticating-with-google -m "Start writing the Google auth doc" Start a new Subversion branch without

Committing transaction...
svn: E165001: Commit blocked by pre-commit hook (exit code 1) with output:

REJECTED!

Branch names must contain a Task type issue key (e.g. "DOC-5-my-feature").

—- |
1.1 BRANCH [authenticating-with-google] Exactly one issue key must be mentioned in the branch name Re;ected'
1.1 COMMIT [8] on [authenticating-with-google] Exactly one issue key must be mentioned in the branch name
All changes committed to this repository must follow the ACME Documentation Change Control Procedure.

tart again with the lin|
$ svn cp ~/trunk A/branches/DOC-6-authenticating-with-google -m "Start writing the Google auth doc"

Committing transaction...

Committed revision 8. 1 Accepted.
$

including the related issue key in its name.

Installing commit policies

Installing and applying commit policies to repositories

Hook Script Wizard

Congratulations!

The TOMCAT commit policy is now active in the Git repository.
Tip: read the commit policies with Git page.

Happy coding!

How commit policies enable

end-to-end traceability and faster code reviews

Why do you need commit policies?

How do commit policies work?

Defining commit policies

Installing commit policies

Commit policies in any environment

Introducing commit policies to your team

Installing commit policies

Supported Version Control Systems

O git
o Bitbucket

|:'|:|':| Any custom VCS or environment
’ via REST API

V
— oY

SUBVERSION mercurial

Installing commit policies

Supported clients & IDE integrations

€ 5t

Share View

> ThisPC > LocalDisk (C:) > Users > Leventesz > git > main > src > main > java > com > midori > jira > plugin > betterexcel

Name

s Quick access

33 Dropbox

4@ OneDrive
8 C

a0 &
B x1sResource jay
B xisResourceCo

Commit to: master

Date modified Type Size

a\com\midori rodel - Commit

[Cre

Writing objects

git.exe

Writing

remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote:
remote

Counting objects:
Delta compression using up to 4 threads.
Compressing objects:
100% (13/13), 991 bytes | @ bytes/s, done.
Total 13 (delta 5), reused @ (delta @)

To https://midori.dyndns.org:8445/scm/~levente.

push --progress "origin” master:master
13, done.

100% (9/9), done.
objects:

Commit policy is violated.

REJECTED!

Include the keys of your open issues in the beginning part of the commit message:

1.1 COMMIT [ca785b@3cFf] on [master] Commit messag

"JXLS-123 Fixed"

a null che;

must match the pattern <(2s)(2:IXLS)-\d+.*

dd ck
1.2 COMMIT [ca785b@3cFF] on [master] At least one issue key must be mentioned in the commit message "Add a null check

THIS REPOSITORY IS FOR THE JXLS PRODUCT CODE.

zabo/main.git

6items

! [remote rejected] master -> master (pre-receive hook declined)
error: failed to push some refs to 'https://midori.dyndns.or

:8445/scm/~levente.szabo/main.git'

git did not exit cleanly (exit code 1) (2156 ms @ 2018. 06. 15.

13:43:31)

I 4 v |
Home Share View
« v 4 | > ThisPC > LocalDisk(C) > Users > Leventesz > Google Cloud Platform Projectswc > google-cloud-cli > google-cloud-bigquery
Name Date modified Type Size
st Quick access
spi 2018.06.08.13:39 File folder
&* Dropbox testing 2012.06.08.1339 File folder
j 2018. 06, 5 JAVA
— H Actjova 2018.06.08.11:54 JAVAFile 14K8
H BigQueryjova 2018.06.08.11:54 JAVAFile 423K8
[This PC H BigQuenyErrorjava 2018.06.08.11:54 JAVAFile 5KB
1 3D Objects [H BigQueryException java 2012.06.08.11:54 JAVAFile 4K8
I Desktop H BigQuenyFactory.java 2018.06.08.11:54 JAVAFile 1k8
Action Path
Command Commit to file:///C: Users/Levente_sz/Google%20Cloud2%20Platform?%20Projects/google-doud Jgoogle-doud-bigquery/sr m/google/
Modified C:\Users\Levente_sz\Google Cloud Platform Pr doud query\sr y
Sending content C:\Users\.evente_sz\Google Cloud Platform Pre doud doud-bigquery \sr y
‘ Committing transaction...
Error Commit failed (detais follow):
Error Commit blocked by pre~commit hook (exit code 1) with output:
Error
Error REJECTED!
Error
Error The commit must reference a user story!
Error
Error 1.1 COMMIT [3] on [trunk] Commit message "Add support for P...” must match the
Error pattern <hello> (glob)
Error
Error REJECTED!
Error
Error If you want to break the lock, use the ‘Check For Modifications' dialog or the repository browser.
Completed!
The operation faied.
T —— e — —
B Jobstatistics java 2018.06.08.11:54 JAVAFile 28K8
B Jobstatusjava AVA File 6 KB
B Labelsjava VA File 3KB
H LegacysaLTypeNamejava JAVA File 5K8B
B LoadConfiguration java 2018.06.08.11:54 JAVAFile 8KB
57 items

REST API

Integrate with custom VCSs and custom environments

New REST end-points are added to the standard Jira REST API!

For commit verification:

/commit-policy/{policy-id}/verification

For listing existing commit policies:

/commit-policy
For generating hook scripts:

/hook-script/{vcs}/{os}/{policy-id}

— Learn more:

http://www.midori-global.com/products/better-commit-policy-for-jira/documentation/rest-api

How commit policies enable

end-to-end traceability and faster code reviews

Why do you need commit policies?

How do commit policies work?

Defining commit policies

Installing commit policies

Commit policies in any environment

Introducing commit policies to your team

Introducing commit policies to your team

Making your job easier by getting everyone on board

O

Don't surprise the team Bring real-life examples to Encourage using local
with commit policies support your case commit verification

Introducing commit policies to your team

Use the Team Playbook by Atlassian

Use the 5 “Whys” Analysis

https://www.atlassian.com/team-playbook

MIDORI j*§

Thank you!

(@y

Levente Szabo * levente.szabo@midori-global.com

MIDORI j+§

Try our other apps, too (free)!

A

Better PDF Exporter for Jira

Easy emailing, sharing,
archiving, printing for Jira
data

X

Better Excel Exporter for Jira

Full-blown native Excel
exports, spreadsheet
reports and Business

Intelligence for Jira

Better Content Archiving
for Confluence

Usage tracking, expiration,
review workflow, retention
and clean-up for your
Confluence pages

