

	

	
	
		
			

						
				
					
				
				
					
				
			

						
					Products
 							Better Excel Exporter
for Jira

	Better Excel Automation
for Jira

	Better PDF Exporter
for Jira

	Better PDF Automation
for Jira

	Better Content Archiving
for Confluence

	Better Commit Policy
for Jira

	Better Commit Policy
for Bitbucket

	Better DevOps Automation
for Jira

					
	Services
 							Template Development

	Implementation

	Custom Development

					
	Support

							Customer Support

	System Status
	Documentation

	Video Library

	Webinars

	Search

					
	Company

							About

	Customers

	Success Stories

	Security & Trust

	Technology Partners

	Solution Partners

	Sales Enablement Kits

	Jobs

	Contact Us

					
	Blog

	We are hiring!

	

			
		

	

	
		
										User Manual

				
					Better PDF Automation for Jira Data Center
									

					

	
				
			
				
												Want to automatically generate Excel reports too?
		Check out our Excel automation app!
								

		
	

	

			
	
		🛡️ Midori is now SOC 2 compliant!
		Learn more →
	

	

	
		
				
		
			
				
						
		Hosting:
		
											Server
									

											Data Center
									

	

Useful links

	Get it free
	Ask for support
	At Atlassian Marketplace →
	Back to overview ↵

Inspiration

	Success stories

Resources

	Installation
	Version history (Upgrade guides)
	Security & Trust 	

	Troubleshooting

Tutorials

	Tutorial videos
	Tutorial articles
	Best practices

Documentation

	User manual
	Cloud integrations 	

				

			

		

	

	
		
							In this page

				
Overview
Automation for PDF exports
Introduction video
Automation rules
Sending PDF documents in email from a JQL query periodically
Sending PDF documents in email on issue events (creation, update, comment, etc.)
Saving PDF documents to the filesystem from a JQL query periodically
Saving PDF documents to the filesystem on issue events (creation, update, comment, etc.)
Attaching PDF documents to issues from a JQL query periodically
Attaching PDF documents to issues on issue events (creation, update, comment, etc.)
Configuration
Template variables for actions
Model variables for the PdfApi
PDF automation for Jira dashboards
PDF automation in Jira Data Center deployments

					

						
	
	
	
	
	
		
		
						

	Note that there are three techniques to implement automatic processes with Better PDF Exporter for Jira.
	To be sure that using the Better PDF Automation for Jira app is the best for you, read the Automation article (in the Better PDF Exporter for Jira documentation) before this one.

		

	

Overview

	The free Automation Lite for Jira app (developed by Atlassian) offers a convenient way to implement powerful automation within Jira.
	Automation is implemented by defining so-called rules, which are combinations of triggers	and actions.

	The execution model in a nutshell: if the trigger "happens", then the action is "executed".

	Some example triggers are "07:00AM every morning in weekdays", "every two hours", "when an issue is created", "when work is logged on a task" and "when a critical bug is reopened".

	Some example actions are "update an issue", "transition an issue", "assign an issue", and "edit the labels of an issue".

	Therefore, some example rules are "create a 'weekly meeting' task 07:00AM every Monday" or "assign an critical bug to the component lead when that was reopened".

	Automation rules can be easily created, updated, deleted, enabled or disabled in Jira:

		

		
			
			

		
	

	

	This is a really powerful mechanism to make Jira work for you.
	Atlassian has published a blog post Why Atlassian Support uses the Jira Automation Plugin.
	Although the app went through lots of changes since the blog post, we still strongly recommend reading it, as it perfectly summarizes the key concepts, which remained unchanged.

	This article explains how to implement automatic generation of PDF documents from Jira data.
	It also shows how to email the resulted file to an email address, save that to the file system, or attach that to a Jira issue.

Automation for PDF exports

	Automation Lite for Jira can be extended by further apps, by adding new triggers and new actions.

	Better PDF Automation for Jira by Midori introduces new actions to generate PDF documents from Jira data and:

	send those to certain email addresses
	save those to the file system
	attach those to Jira issues

	How will you use it? (examples)

	Send a custom Burn Down Chart report (of multiple teams, of multiple products, per individual, etc.) to your Scrum masters every morning.
	Send a Project Status Report to your C-level executives every Monday, to support their weekly meetings.
	Send an invoice to your customers when their orders were accepted.
	Send the release notes document to your product manager when a new version is to be released.
	Save a timestamped backup of an issue at its creation and each updates to the file system, for future audits.
	Capture the current state of your issue at relevant changes to a PDF document, and attach the snapshot to the issue, for versioning purposes.
	Export your support tickets every hour to a network drive directory, where they are indexed by your company's internal full-text search engine.

Introduction video

	Get started by watching this video, to understand the big picture in a couple of minutes:

					

		
			
			
				
			

			

		
	

			
			 Automating Jira PDF exports with Better PDF Automation
		

		

Automation rules

Sending PDF documents in email from a JQL query periodically

	Configuration steps:

	Login to Jira as Jira administrator.
	Go to Administration → System → Automation rules.
	Click Add Rule.
	Select the JQL Filter Trigger and enter your CRON expression. Hint: set it to a frequent value (like every minutes by using "0 * * * * ?") for the testing period. (If you are using Automation 3.0.0 or newer, then expand the More options section and check the Process all issues produced by this trigger in bulk checkbox. Otherwise, there will be a separate email sent for each issue.)
	Select the Send PDF Action and fill all parameters (read the comments under the input controls). Hint: set the email address to your own mailbox for the testing period.
	Save the rule. Also, don't forget to enable the rule if you haven't done so!
	Now wait for the first execution to test if the rule works as expected. Check the Audit log in the top of the Automation screen, because that keeps a good track of executions and eventual problems. Also check the Jira log if there is problem, but the Audit log was not helpful.
	If it works as expected, configure the rule with the final CRON expression and with the final email addresses.
	You're done!

	You can configure the Send PDF Action with this straight-forward form:

		

		
			
			

		
	

	

	Most action parameters should be trivial, but the two states of the Send a single email switch may require a quick comparison:

	"Send a single email" state	Off (default)	On
	
				Number of emails
				
				A separate email is sent to each recipient in the "To" parameter.

				(N emails are sent in total, where N is the number of "To" addresses.)
				
				A single email is sent to every recipient in the "To" parameter.

				(Only 1 email is sent.)
			
	
				"Cc"/"Bcc" recipients
				
				Not allowed.

				(Because it would lead to an email flood!
				Imagine this: you want to send separate emails, with the "To" field set to "alice@acme.com, bob@acme.com" and "Cc" set to "cecil@acme.com".
				In this case, Cecil would receive the same email twice: both the one sent to Alice and the one sent to Bob!)
				
				Allowed.

				(They are simply the"Cc" and "Bcc" recipients of the single email.)
			
	
				Privacy
				
				Recipients will not know about each other.
				
				Recipients will know about each other.

				(More precisely, they can see each other in the "To" and "Cc" fields, but not in "Bcc".)
			
	
				Email threads
				
				Not knowing the other recipients, it is not possible to start an email thread.
				
				By using "reply all" on the original email, it is possible to start an email thread with the other recipients.
			

	Every time the rule is executed, recipients will receive the email with the PDF file in the attachment:

		

		
			
			

		
	

	

Sending PDF documents in email on issue events (creation, update, comment, etc.)

	Automation Lite for Jira offers another type of trigger, called Issue Event Trigger.
	As its name suggest, it triggers an action when a certain event happens to an issue. It also supports post-filtering issues by a JQL expression.

	Follow the same steps as in the first section, but use this other type trigger. (Configuring the action part is 100% identical.)

Saving PDF documents to the filesystem from a JQL query periodically

	Follow the same steps as in the first section, but select the Save PDF Action.
	This action has slightly different parameters, the most important one being the file system path where to save the resulted PDF document.

	You can configure the Save PDF Action with this straight-forward form:

		

		
			
			

		
	

	

	The File system path parameter determines the full file system path (including the filename, too) where to save the generated PDF document.
	You can freely use local paths, network paths and drives here.
	See these examples:

for Linux, Mac OS X, U*x variants:
/my/directory/${issues.get(0).key}-${date.get('yyyyMMdd-HHmm')}.pdf
...will result in the path: "/my/directory/FOO-123-20141027-1639.pdf"

for Windows "regular" paths:
(note the double backslash characters used for escaping!)
c:\\my\\directory\\${issues.get(0).key}-${date.get('yyyyMMdd-HHmm')}.pdf
...will result in the path: "c:\my\directory\FOO-123-20141027-1639.pdf"

for Windows network locations:
\\\\my-server\\my\\directory\\${issues.get(0).key}-${date.get('yyyyMMdd-HHmm')}.pdf
...will result in the path: "\\my-server\my\directory\FOO-123-20141027-1639.pdf"

	Tips for advanced use cases:

	
		Saving the PDF file to a remote location that requires authentication:
		just map it as a network drive with the proper login credentials, then configure the action to write to the resulted drive.
	
	
		Saving the PDF file to the cloud (Dropbox/Google Drive/Microsoft OneDrive):
		see the recipes.
	

	Avoid these typical problems:

	
		Make sure that the target directory can be written by the Jira process.
	
	
		If you use an expression in the File system path parameter, make sure that it will not result in characters that would break the resulted path.

		For example, it is safe to use the key field of the issue in the expression, because issue keys can contain alphanumeric characters and '-' only, and all those are allowed in paths.
		In contrary, the summary field can contain nearly any character, some of which are not allowed in paths.
		Note that the disallowed characters in paths depend on your operating system!

		Similarly, if a summary like "Crash with low/zero memory" contains the path separator character ("\" on Windows and "/" on Linux), it will be rendered to the final path as "/my/directory/Crash with low/zero capacity.pdf", and there will be unexpected directories created.

		To avoid these, use an expression like this to replace the dangerous characters with '-':

/my/directory/${issues.get(0).summary.replaceAll("[^\w-]", "-")}.pdf

	

	Every time the rule is executed, the PDF file is saved to the file system:

		

		
			
			

		
	

	

	Hint: if your rule will be triggered multiple times for the same issue(s) and you export to the same path, then the file will be overwritten every time.
	If this is unwanted, you should include the time stamp in the filename.
	For example, use the path parameter /my/directory/myexport-${date.get('yyyyMMdd-HHmmss')}.pdf to get a unique file name at each export.

Saving PDF documents to the filesystem on issue events (creation, update, comment, etc.)

	It is trivially the same as the previous section, but using the Issue Event Trigger.

Attaching PDF documents to issues from a JQL query periodically

	Follow the same steps as in the first section, but select the Attach PDF Action.
	This action has slightly different parameters, with two notable differences.

	Use the Attach to option to select the issue which the resulted PDF document will be attached to.
	This can either be the issue that triggered the execution (first option), or any other issue selected by a JQL query (second option).
	Using the second option allows you to implement static (ex: select the target issue by its key) or dynamic behavior (ex: select the most recently created issue of a given issue type).

	The File name option is fairly trivial, but there is an additional option Overwrite, which decides what to do at file name collisions.
	It's important to understand that Jira allows issues to have multiple attachments with the same filename!
	If the issue already has an attachment with the same filename when the automation action is executed, two things can happen.
	If Overwrite is checked, then only the last attachment will be kept, previous ones will deleted (cleaned up).
	If Overwrite in unchecked, then a separate attachment with the same file name will be created.

	You can configure the Attach PDF Action with this straight-forward form:

		

		
			
			

		
	

	

	Every time the rule is executed, the PDF file is attached to the selected issue:

		

		
			
			

		
	

	

Attaching PDF documents to issues on issue events (creation, update, comment, etc.)

	It is trivially the same as the previous section, but using the Issue Event Trigger.

Configuration

Template variables for actions

	In addition to hard-coded static values, several action parameters accept dynamic values using template variables in Velocity syntax.
	For example, you can say "send this PDF document to the creator of the corresponding issue", instead of entering a concrete email address.
	You can find a "Tip: use template variables." message at each parameter in the configuration UI that accepts these.

	The variables are best explained by some examples:

${issues} is a collection of issue objects.
Note that starting from $issues, you can traverse the object graph:
enclosing projects, priority objects, status objects, assignees, reporters, etc.
You do it the same exact way as in any other Velocity template.
See: https://docs.atlassian.com/software/jira/docs/api/latest/com/atlassian/jira/issue/Issue.html

- basic ---

${user} is the username string you specified as "Actor"
This PDF is rendered as user <${user}> ## for debugging purposes

${templateName} is the filename string you specified as "Template name"
This PDF is rendered from <${templateName}> ## for debugging purposes

${to}, ${cc} and ${bcc} are the email address strings you specified in the 3 action parameters
Primary recipients: ${to}
Secondary recipients: ${cc}
Blind carbon copy goes to: ${bcc}

- standard fields ---

the number of issues passed (as size of the collection)
${issues.size()} pending bugs

the key of the first issue (accessed by the item's index)
${issues.get(0).key} done!

the summary of the first issue
NEW: ${issues.get(0).summary}

the key of the first issue's project (accessed as embedded property)
Report for ${issues.get(0).projectObject.key}

email address of the first issue's creator (typically used as a target email address)
${issues.get(0).creator.emailAddress}

email address of the first issue's assignee (typically used as a target email address)
${issues.get(0).assignee.emailAddress}

- custom fields ---

The #cfValue() macro displays nicely formatted values from custom fields,
depending on the custom fields' types.

formatted value of the custom field with the ID=10000 in the first issue, with line break
#cfValue(${issues.get(0)} 10000)

formatted value, without line break
#cfValueInline(${issues.get(0)} 10001)

- dates & times ---

The ${date} tool allows freely formatting date and time values using simple "pattern strings".
See: https://velocity.apache.org/tools/devel/javadoc/org/apache/velocity/tools/generic/DateTool.html

formatting current date and time as "20141107-1046"
${date.get('yyyyMMdd-HHmm')}

formatting an existing date object in medium length (ex: "Oct 7, 2003 3:14:50 AM")
$date.format('medium', $someDateObject)

- rule and trigger configuration --------------------------------

The variables below give convenient access to configuration of the automation rule.
All values are strings.
Not documented here in details, as they just hold the corresponding setting available in the UI.
${automationRuleId} ## ex: "1"
${automationRuleName} ## ex: "Archive closed bugs"

${automationTriggerProcessIssuesInBulk} ## ex: "true"
${automationTriggerOnlyUpdatedIssues} ## ex: "false"

${automationTriggerJiraJqlExpression} ## ex: "filter = 10123"
${automationTriggerJql} ## same (for backward compatibility)
${automationTriggerScheduleMethod} ## ex: "FIXED", "CRON"
${automationTriggerExecutionMode} ## ex: "jql"
${automationTriggerScheduleRate} ## ex: "10"
${automationTriggerScheduleRateInterval} ## ex: "86400"
${automationTriggerScheduleCronExpression} ## ex: "0 0 */2 * * ?"

${automationTriggerPropertyKeys}
${automationTriggerIssueEvent} ## ex: "issue_commented"
${automationTriggerEventKey} ## ex: "jira:issue_updated"

${automationTriggerRawParameters} is a multi level string-keyed map of all trigger parameter objects.
These give a lower-level access to the automation rule, also including 3rd party triggers.
${automationTriggerRawParameters} ## ex: {schedule={rate=10, rateInterval=86400}, jql=[project=DEMO], executionMode=[jql]}

Model variables for the PdfApi

	Better PDF Automation for Jira relies on the PdfApi (implemented by Better PDF Exporter for Jira) to generate the actual PDF document files.
	More precisely, it invokes the getPdf() API end-point and passes several variables to that.
	These variables can be used to affect the resulted PDF document in intelligent ways: from just displaying them in the PDF document to using them as condition variables.
	For example, if the automation action's name contains the word "weekly", then the date format could turn to "2017 W13" during the rendering, otherwise to "2017 Feb".

	The following variables are available both in the PDF templates and in the Groovy scripts during the rendering.
	In the template you would typically prefix them with a dollar sign and wrap them in curly braces (as shown below), like ${automationActionName}.
	In Groovy scripts, they are regular "global" variables, no need for the dollar sign and the curly braces, just automationActionName.

- rule and trigger configuration --------------------------------

The variables below give convenient access to configuration of the automation rule.
All values are strings.
Not documented here in details, as they just hold the corresponding setting available in the UI.
${automationRuleId} ## ex: "1"
${automationRuleName} ## ex: "Archive closed bugs"

${automationTriggerProcessIssuesInBulk} ## ex: "true"
${automationTriggerOnlyUpdatedIssues} ## ex: "false"

${automationTriggerJiraJqlExpression} ## ex: "filter = 10123"
${automationTriggerJql} ## same (for backward compatibility)
${automationTriggerScheduleMethod} ## ex: "FIXED", "CRON"
${automationTriggerExecutionMode} ## ex: "jql"
${automationTriggerScheduleRate} ## ex: "10"
${automationTriggerScheduleRateInterval} ## ex: "86400"
${automationTriggerScheduleCronExpression} ## ex: "0 0 */2 * * ?"

${automationTriggerPropertyKeys}
${automationTriggerIssueEvent} ## ex: "issue_commented"
${automationTriggerEventKey} ## ex: "jira:issue_updated"

${automationTriggerRawParameters} is a multi level string-keyed map of all trigger parameter objects.
These give a lower-level access to the automation rule, also including 3rd party triggers.
${automationTriggerRawParameters} ## ex: {schedule={rate=10, rateInterval=86400}, jql=[project=DEMO], executionMode=[jql]}

	PDF automation for Jira dashboards

	
		Jira dashboards can also be exported to PDF, then emailed, saved or attached in order to automatically distribute the result.
		This is a really powerful way of keeping your team members and managers up-to-date with zero efforts.
	

	
		For dashboards, you configure the automation rules the same way as for issues.
		There are just two things to be aware of:
	

		
 You have to enter the ID of the dashboard to the Title field in the automation action's configuration.
 Read here why.

	
 If you want the automation rule be executed periodically, you have to use the JQL Filter Trigger, which requires you to enter a valid JQL query.
 This is a bit counter-intuitive, as the result of the JQL query does not actually affect the dashboard (dashboard gadgets define their own data sources).
 At the same time, the JQL must find at least one issue, otherwise the action will not be executed.
 This means, you should use a dead-simple JQL query that runs fast and results in exactly one issue.
 A find-by-key query like this is great choice: key = YOURPROJECTKEY-1.
			Don't forget to uncheck the Only include issues that have changed since the last time this rule executed option, otherwise the query which returns the same issue at each execution will run only once, for obvious reasons.

	
		Our dashboard template customization video also shows the complete step-by-step (starting from 3:04):
	

	
				

		
			
			
				
			

			

		
	

			
			 Customizing Jira dashboard PDF exports
		

		

	PDF automation in Jira Data Center deployments

	
		Better PDF Automation for Jira 2.0.0 and newer versions fully support Jira Data Center, enabling automation in clustered Jira deployments.
	

	
		The execution model is simple: automation rules will be executed on exactly one node in the cluster.
		(This is guaranteed by Automation Lite for Jira.)
	

	
		The resulted behavior is:
	

		
			Send PDF Action: one email will be sent from the cluster (not one per node!).
			This is exactly what you want.
		
	
			Save PDF Action: the file will be saved by one node.
			If the file is written to the node's local non-replicating filesystem, then the file will not automatically appear on other nodes.
			If output file replication is a requirement, you should use an output directory that is replicated among the clusters on a filesystem level.
			This is out of the scope of Jira Data Center and the Better PDF Automation for Jira.
		
	
			Attach PDF Action: the attachment will be created on one node, but that will then be automatically replicated to all other nodes.
			The replication itself is the responsibility of Jira Data Center (not the Better PDF Automation for Jira).
		

	
		Generally speaking: Better PDF Automation for Jira works perfectly with Jira Data Center.
	

	Questions?

		Ask us
 any time.

			
				
			

		

	

		

	

	
		
			
				
					Products

					Better Excel Exporter for Jira

					Better Excel Automation for Jira

					Better PDF Exporter for Jira

					Better PDF Automation for Jira

					Better Content Archiving for Confluence

					Better Commit Policy for Jira

					Better Commit Policy for Bitbucket
					Better DevOps Automation for Jira
				

			

			
				
					Support

					Customer Support

					System Status

					Documentation

					Video Library

					Webinars

					Search

				

			

			
				
					Latest news

					

																		How to fix the flaws in Confluence Daily Digest

																								What is a Confluence page owner and how to use it best

																								Export a Jira version report to Excel

																								Confluence notification and reminder to page owners

																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						more news →
				

			

			
				
					Get in touch

					info@midori-global.com

					On the Atlassian Marketplace →

					Subscribe the Midori Newsletter

					Join the Midori community →

					Security & Trust

					Privacy Policy

					EULA

					© 2023 Midori.

					

					
						
						
					
					
						
						
					
					
						
						
					
					
						
						
					
				

			

		

	

